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metries become, so to speak, "quantized" by the self-
consistency requirement, which determines not only the 
qualitative features of the allowable deviations from 
symmetry, but also their numerical magnitudes. In the 
model we have studied, in which eight vector mesons 
interact among themselves, self-consistency has led to 
a number of interesting results concerning the departure 
from SUz symmetry. 

We found, first, that the model is very stable against 
a perturbation from symmetry which has the trans­
formation properties of a 27-fold tensor, and much less 
stable against a perturbation of the 8-fold type.18 This 
has the consequence that the model can be expected to 
have additional self-consistent solutions which have a 
small dissymmetry which is predominantly character­
ized by an 8-fold tensor, but does not have solutions 
with a small 27-fold dissymmetry. Since we consider a 
rather simplified model, and treat it only qualitatively, 
we do not attempt to calculate the numerical value of 
the dissymmetry. However, the fact that the magni-

18 I t would be quite wrong to speak of the symmetrical solution 
as being unstable against an 8-fold perturbation, since the magni­
tude of the deviation is, in fact, prescribed. 

I. INTRODUCTION 

WE present here a relativistic model for scalar-
meson-scalar-meson scattering and discuss the 

analytic properties of the resulting partial-wave scat­
tering amplitude in the complex angular momentum 
plane. The method consists of decomposing the partial-
wave amplitude, a(s,l), 

a(s,l) = N(s,l)tl+D(s,l)']~1, (l.D 

and calculating both N and D by perturbation expan­
sions using an interaction of the form (g/3!): <£3:. The 
details of the method will be given in the next section. 

* Work supported in part by the U. S. Atomic Energy Com­
mission, 

tudes are determined by self-consistency leads at once, 
as we have shown, to retention of SU* symmetry. In 
other words, our model leads, in a naturalistic way, 
both to the Gell-Mann-Okubo mass formula and to 
the isotopic spin concept. 

Finally, it should be pointed out that our present 
work is limited in three respects. First, we do not have 
a useful criterion for choosing between the completely 
symmetrical solution and the solution with perturbed 
symmetry; in fact, we have not even given an a priori 
reason for preferring SU$ to any other group. Second, 
we have relied on qualitative arguments in estimating 
the parameters which describe the internal dynamical 
structure of the bound states. We should like to sug­
gest, as a particularly useful program of numerical 
computation, the precise evaluation of bound state 
energies for a variety of input masses. This would deter­
mine these parameters more exactly, and also allow the 
exploration of the possibility of very unsymmetrical 
solutions to Eq. (1). Third, it is clear that the inter­
relations among the dissymmetries of different kinds of 
particles will be of particular interest. This last question 
we intend to discuss further in another paper. 

Although the procedure is explicitly carried out to 
fourth order, we believe that some of the results 
established hold for all orders in g. One result is that 
the Regge trajectories 

/=«„($), » - l , 2 , . - . , ' (1.2) 

with the possible exception of n= 1, cannot be expanded 
in a power series in g. As we shall show later, this is 
intimately connected with the failure of the pertur­
bation expansion near negative integer values of I. 

Another result obtained is that the contribution of 
inelastic processes to the scattering amplitude leads, in 
a simple way, to the existence of branch cuts in the 
complex / plane for the denominator function to fourth 
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order. These cuts are found to lie on the real / axis in 
the neighborhood of negative integers. Although the 
model we are using to obtain these results is clearly 
unphysical, we believe that the situation is very much 
the same in more realistic cases. 

In Sec. II , we outline the general method for ob­
taining N and D in a perturbation expansion, and 
using the $3 interaction, apply the method to calculate 
N and D to fourth order in Sees. I l l through V. In 
these sections, we are primarily concerned with the 
singular behavior of N and D at negative integer values 
of l. Section VI is devoted to the existence of branch 
cuts due to inelastic processes. The last section contains 
a discussion of results, some conclusions and possible 
generalizations. All complicated expressions and lengthy 
derivations have been relegated to the Appendixes. 

II. GENERAL METHOD 

We assume that both N and D can be expanded in 
powers of g2, where g is the coupling constant. 

»-i (2.1) 

To generate these series, assume that the scattering 
amplitude satisfies the Mandelstam representation, 

g2 1 /•• a(s') 
/ ( * , * , « ) = - - — + - / ds'-

S—l TV J A s'~~S 

1 r00 r<° p(s',t') 
H— / / ds'dt'-

7T./4 J 4 0 ' - * ) ( / ' - / ) 

+ crossing symmetric terms. (2.2) 

We have taken the mass of the meson to be 1 and 
suppressed possible subtraction terms and convergence 
factors for the sake of simplicity. 

The partial-wave amplitude a (s,l) is given by 

4 r* / 2t \ 
a(s,l) = dtQi(l+ )A(s,l), (2.3) 

(S-4)TJI \ s-W 

where1 

1 /•« p(s',l) 
A(syt)^-g2ir5(t-l)+- / ds' 

IT J 4 s'— 5 

1 /•« p(u\t) 
_)___ / fa* hcr(0-

TJA t+s—4+u' 
1 The factor i [ l+e*V i ] multiDlying a(s,l) has been left out. 

This factor must be reintroduced in writing a Watson-Sommerfeld 
type representation. 

The integral in Eq. (2.3) converges when the real 
part of / is sufficiently large and in this region defines 
an analytic function; further, it coincides with the 
physical partial waves at even integer values of I. The 
double dispersion relation implies that a(s,l) is analytic 
in the complex s plane except for a cut running along 
the real axis. 

One can expand a(s,l) in powers of g2, 

(2.4) 

Clearly, this expansion cannot converge when s and 
/ approach a Regge trajectory. However, we expect 
that when a(s,l) is written as a ratio of N and D, the 
perturbative expansions for N and D have a much 
larger domain of convergence. In fact, in nonrelativistic 
potential scattering, N and D have convergent expan­
sions for all values of g2, I, and s.2 

The iteration procedure is begun by equating 
coefficients of g2 on both sides of Eq. (1.1), which gives, 

N<»(sJ) = a<n(s9l). (2.5) 

As usual, N(s,l) is defined to have a branch cut only 
for — o o O < 4 , while D carries the other portion of 
the cut extending from s = 4c to oo? and satisfies the 
following dispersion relation: 

1 /•« AD(s',l) 
D(s,l) = - / ds' , (2.6) 

TJ4 S'—S 

where &D{sf,l)^ ( 2 i ) - 1 [P ( /+ i€ , l)-D(s'-ie, / ) ] . 
We obtain AD(s,l) from Eq. (1.1) for s>4, 

NAD= - [ l + # + I l + # - ] A a , (2.7) 

with D±=D(sdLie, I) and Aa= (2i)~l[_a+—a J]. 
To find AD$\ the right-hand side of (2.7) must be 

taken to fourth order. As we shall see later, for s > 4 , 
Aa<2> = 0and , 

Aa<4> (s,l) = p(s)a+™ (s,l)aJ*> (s,l), (2.8) 

where p(s) = [X.?—4)/5]I/2. Using these relations, we 
arrive at the well-known result, 

AD®(sJ)=-p(s)N<»(s,l). (2.9) 

N{4:) is given, by Eq. (1.1), in terms of the known 
quantities a(4\ a(2\ and Z>(2), 

NM(sfi = aM(s,l)+a®(s,l)DW(s,r). (2.10) 

Both terms on the right-hand side of Eq. (2.9) have 
cuts for s > 4 , but the discontinuities cancel by virtue 
of Eq. (2.8), so that N(i)(s,l) has a cut only for 5<4 . 

AZ)(4) can be calculated from Eq. (2.7), 

~A7(2)AZ^4) = Ar(4)AZ>^ 
+ [ZV 2 )+#~ ( 2 )]Aa ( 4 )+A^ 6>. (2.11) 

2 R. G. Newton, J. Math. Phys. 3, 867 (1962). 
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Since Aa(6) contains contributions from three-meson 
intermediate states, elastic unitarity no longer holds. 
However, we can write a(6) as a sum of elastic and 
inelastic terms, 

a<e> = a e
( 6 )+0i ( 6 ) , (2.12) 

where ae
(6) consists of all elastic graphs and for s > 4 , 

satisfies 
Aaa(6) = p[fl+(4)+fiL.(4)>(2). (2.13) 

Equations (2.12) and (2.13) enable us to write 

and 
i r NW(S',I) 

D<*>(s,l)=-- ds'p(s') 
TV J 4 S'—S 

1 r AaiW(s',l) 
- - / ds' . (2.14) 

The contribution from inelastic processes to D(4) in 
Eq. (2.14) is of special interest because of the presence 
of N(2) in the denominator of the integrand. This can 
give rise to branch cuts in the complex I plane if, for a 
range of values of /, iV(2)(s,/) vanishes somewhere in 
the interval 9<s< °o. We shall see later that this does 
happen. 

The iteration procedure outlined above can be 
carried out in a similar manner to yield N and D to 
arbitrary order. We shall not bother to write down the 
general expressions for N and D since we are not going 
to make any use of them. 

At this point, it should be noted that the decompo­
sition of the scattering amplitude made here is not 
unique even when we require that D contain the entire 
right-hand cut. I t has been assumed that the denomi­
nator, 1+Z>, contains no CDD poles and that it can 
be written in the form l + E n ^ r ^ ^ ^ / ) , rather 
than P(s,?,t)+Zn-"fnp™(s,t), where P(s,g2,l) is 
an arbitrary polynomial in s. The only justifications 
for our particular choice of decomposition are its 
simplicity and analogy with nonrelativistic potential 
scattering. We should also point out that the dispersion 
relation for D in the case of <£3 interaction needs no 
convergence factors, and we combine all possible 
additive polynomials in P(s,g2,l) mentioned above. 

III. SECOND-ORDER TERMS IN N AND D 

Since p(s,f) and <r(t) are at least of order g4, a(2)(s,l) 
is obtained from Eq. (2.3) by substituting for A(s,t) 
the single-meson exchange contribution — g2irb(t— 1). 

Using Eq. (2.5) we find, 

jyw (s,l) = a™ (s,t) = - [ 4 / ( $ - 4 ) ] 

X e O + 2 / ( * - 4 ) ] . (3.1) 

From the well-known properties of Qiy
z it follows that 

3 A. Erdelyi, Higher Trancendental Functions (McGraw-Hill 
Book Company, Inc., New York, 1954), Vol. 1, Chap. 3. 

iV(2) (s,l) is analytic in the entire complex I plane, except 
for the points l=—ny n=l, 2, 3, •••. At l~—n, 
N{2) (s,l) has a simple pole with residue 

T , W = - [ 4 / ( . - 4 ) ] P _ 1 [ l + 2 / ( . - 4 ) ] . (3.2) 

Given N{2)(s,l), we obtain D{2)(syl) by means of 
Eqs. (2.6) and (2.9): 

D<®(s,t) = -
dzQi{z) 

W i (2z-iy»[2+(4t-s)(z-l)] 
, (3.3) 

where we have introduced a simple change of variable. 
Since Qi(z) behaves like z~l~x as z—»°o? the integral 

defining Z)(2)(^,Z) converges for ReZ>—f unless s = 4 . 
For s = 4 , the integral converges for Re/> —\. Equation 
(3.3), therefore, defines Di2)(syl) as an analytic function 
in the complex / plane for Re/> — \ and in the entire 
complex s plane except for a branch cut along 4 < s < °o . 

The integral defining Z)(2) (s,l) can easily be continued 
into the entire complex I plane. To do so we need the 
analytic continuation of the function I(wyl) defined by, 

4 / 2 
D(2) ( Q = J 1 + / 

( s - 4 ) x \ s-4 

I(w,l) = 
dzQi(z) 

(3.4) 

i (2z-l)1/2(z~w) 

where w} in general, is complex. This can be accom­
plished by writing a dispersion relation for the function 

F ( 8 J / ) = ( 2 « - i ) - i « e « ( - 2 ) , (3.5) 

where the branch cut of (2z—1)~1/2 is taken along 
§ < s < o o . Since Qi(—z) is an analytic function of z 
except for a branch cut along — \<z< °o, F(z,l) is an 
analytic function of z except for a branch cut extending 
from —1 to oo. Furthermore, the discontinuity of F 
across the branch cut is known. I t is easy to see from 
the properties of Qi(z) that the dispersion relation for 
F enables us to relate I(w,t) to F{wyl) and integrals 
over a finite range: 

/(«;,/) = 
iQi(-w) 1 rl/2 Pl(~x)dx 

[ 2 w - l ] l / 2 2 J_x [ l - 2 x ] 1 / 2 ( x - w ) COS7T/I 

1 f1 Qi(-x+ie)+Ql(-x-ie)-
-\ / d% 

27rA/2 [_2x-lJ/2(x-w) 
(3.6) 

The right-hand side of Eq. (3.6) defines I{w,l) in the 
entire complex / plane except for simple poles for 
negative integral values of I, where Qi has simple poles. 
Since this expression coincides with the original expres­
sion in Eq. (3.4) defining I(w,l) only for Re/>—f, 
Eq. (3.6) represents the analytic continuation of I(w,l) 
into the entire complex I plane. Note that the vanishing 
of cos7r/ at half-integral values of I does not lead to 
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poles in I(w,l). This follows from the fact that I(w,l) 
has no poles for positive half-integral values of / and 
the fact that Qi=Q~i~i when / is a half-integer. 

Equation (2.6) can be used to obtain the useful 
result, valid for — § < R e / < | , 

I(w,l)=-I(w, - Z - l ) 

+ sin7r/l 

Pi(—x)dx iriPi(—-w)' 

i/2 (2x-iy/2(x-w) ( 2 w - 1)1/2J 
(3.7) 

The right-hand side of Eq. (3.7) then defines the 
analytic continuation of I(w,l) for Re/< J. There is no 
pole at 1=0 since the residue vanishes identically. 

Let us examine briefly the behavior of Regge poles 
both in the small-coupling and high-energy limits. The 
results we are going to get are not new, having been 
obtained by several authors,4 and they are given here 
for the sake of completeness. Taking g2 to be small, 
we restrict ourselves to the first-order contribution to 
Z), obtaining, 

l+?DV(s,t) = 0. (3.8) 

I n the limit g2 —> 0 or s —•> QO y this equation can only 
be satisfied if / tends to a negative integer. If the 
trajectory that ends at / = — n is l=an(s), the first-order 
contribution to <xn is given by 

/=-
4g* 

1 
( J - 4 ) T 

f1 

J 1/2 

(2 

f /s-4\m / 2 \ 
Wl \ P 1 1 1 ' 

" v , ) n-v+s 

x-\y4x-\——j 

-J 

= an(s). (3.9) 

As s —->oo ? the leading term in an(s) is, 

an(s) -> -#+[4g 2 / (4-<r)7r ] l n ( 4 - * ) . (3.10) 

We now can draw the following conclusions about 
Regge trajectories: As s starts from a large negative 
value and moves to the right on the real axis in the s 
plane, an(s) starts from —n and moves to the right in 
the / plane. I t is clear that an{s) cannot reach the value 
— n-\r 1 because of the singularity of D{2) a t this point; 
therefore, all trajectories except for «i must become 

FIG. 1. (a) Radiative 
corrections to the vertex 
function; (b) direct box 
diagram; (c) crossed 
box diagram. 

(a) 

(b) (c) 

complex for some real value of s. I t can be shown that 
this happens for s < 4 , and that all the trajectories end 
at l=—\ when s reaches 4. Since an* is also a solution 
to Eq. (3.8), the trajectories appear in complex conju­
gate pairs. Only the leading trajectory ai(s) remains 
real and reaches a value l>— J at s = 4 . For s > 4 , 
lm?>0 , the an become complex with l m a n > 0 until 
they turn back and approach the negative integer 
points as s —> + oo. 

The similarity of these results with those obtained 
in potential scattering theory is obvious.2 Unfortunately, 
Eq. (3.9) is no longer valid if the fourth-order contri­
bution to D is taken into account, as we shall see later. 
However, we may hope that some of the qualitative 
results still remain valid. 

IV. FOURTH-ORDER CONTRIBUTIONS 
TO THE NUMERATOR 

N(4i\ the fourth-order contribution to the numerator, 
is given in terms of a(4) by Eq. (2.10). a(4) in turn is 
determined from A^(st) through Eq. (2.3). The 
fourth-order graphs that contribute to the absorbtive 
function are shown in Figs. 1(a) (b), and (c). The 
diagrams in Fig. 1(a) are the first-order radiative 
corrections to the vertex function, and their total 
contribution is denoted by y4v

(4)(^,/); Figs. 1(b) and 
1 (c) give the direct and crossed box graphs, and their 
contributions are labeled Ad

{A) and AC
{A\ respectively. 

Denoting the corresponding partial-wave amplitudes 
by av

(4), #d(4), and ac
(4), we have the following explicit 

expressions: 

^ ( 4 ) W) = 
7T2(*-4) /> ( i + ~i ) 

ln(*-3) 

l n / it \ /•» fi 
adM(s,t)= / diQi(l+—) -

1 n / It \ rm 

fl.<4)(*,/)= / dtQill+—)l ds'~ 

{t-m(t-mw 

00 ds' e((s'-4)(t-i)-A) 

s[s'C(s'-4)(*-4)-4jf2 

0((/-4)a-4)-4) 

(4.1) 

+s+t-4)ls'tl(s'-4)(t-4)-4j] 1/2 

4 See, for example, B. W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962). 
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We note that, because of the unitarity condition for the box diagram, aai4) satisfies the elastic unitarity relation 
A^4> = p[><2>]2fors>4. 

Since Qi(z) behaves like z~l~l for large Z, the integrals for #„(4), a/®, and ac
(4) in Eq. (4.1) converge for Re (I) 

> —2, Re(7)> — 1, and Re(Z)>— 2, respectively. These integrals can be continued to the left-half complex / 
plane by means of a procedure similar to that used for D(2) in Sec. I I I . For example, the result for av

i4:) is 

Pz(2 / -1) 
dt-

'o ( 4 - ^ - 1 
av^(s,l) = ~ — — - - l n ( - 2 ) + — — b , ( - l ) + i ( ^ - 4 ) / 

xfa—4)sin0rZ)l*\#L sm(7r/)J \ 5 - 4 / J0 

OS(TT/) r4 / 2/ \ 
/ dtQAl+ ) 

7T 7 0 V s-d ( t - i ) D ( * - 4 ) ] i / 2 

(s—4) sin(wl) [V3L sin(wl)-

ln[(4-.y)/-3]+7re- i w /s in(7r/) i COS(TT/) r \ ( 2/ \ ln(*-3)+(xe- i T0/sin(7i7) 

o [;(4-s)[(4-s);-4]> 

- * " / ' * e I [ l + 2 / / ( 5 - 4 ) ] / C ( / - l ) 0 ( < - 4 ) ) W ] } . (4.2) 

The expressions for ad
(4) and ac

(4) are more compli­
cated, and together with their derivations, they are 
given in Appendix A. 

Equation (4.2) defines a function analytic in the 
product of the cut s plane and the entire I plane with 
the exception of negative integer points. At these 
points there are, in general, third-order poles due to 
the terms of the form [sm(Trl)2~2Qh At the point 
l~— 1, however, the original expression given in Eq. 
(4.1) is valid, and the pole at this point is a simple one. 
Since #(4) = av

(4)+#d (4 )+#c
(4), we have also to consider 

the terms a^(4) and ac
iA). From the expressions given in 

Appendix A, it follows that #c
(4) has a simple pole at 

1= — 1 and third-order poles at every negative odd 
integer starting with I—— 3, whereas a/4) has double 
poles at all negative integers, including / = — 1 . There­
fore, a(4) must have higher order poles at negative 
integer values of / (in general third order), and a 
complete cancellation of these poles between different 
terms, in general, cannot occur. The same conclusion 
also applies to N(A\ since the additional term a(2)Z)(2) 

in Eq. (2.10) has only second-order poles. 
These results have some bearing on the asymptotic 

behavior of individual terms in a perturbation expan­
sion. If a bounded function f(s,t) has a partial-wave 
amplitude a (s,l) which is analytic in the entire / plane 
except for poles at negative integer points, then it 
admits the following asymptotic expansion in inverse 
powers of t, 

f(s,t)= L cn(s)t"*-™+ L t~^dnm(s)[\n(t)J-
n—l n = l m==0 

+RN(s,t). (4.3) 

In this equation, N is a positive integer, in in the 
order of the pole at l=—n, and the background term 
JRAT(^,/) goes like ^Ar~1 as t—>oo. In the first sum, the 
coefficient cn{s) is proportional to [_a{s, n—J) — a(s, 
~n—%)~] and vanishes if a(s, n—%) — a(s, -—n—%). 

As a result of this theorem, it follows that the 
fourth-order terms in the perturbation series have 

asymptotic expansion given in Eq. (4.3), which is a 
generalization of the results of Federbush and Grisaru.5 

The leading terms for a/4), ac
(4), and av^

A) are of the 
form \n(i)/t, 1/t, and 1/t, respectively. I t is also 
interesting to note that the first sum in Eq. (4.3) 
drops out in the case of #d(4).6 

Equation (4.3) is a simple generalization of the result 
derived by Mandelstam7 for the nonrelativistic scat­
tering amplitude. In the case he treats, the first sum 
involving half-integer powers of t drops out; also the 
poles he considers are Regge poles and not the static 
poles that arise here. Of course, no Regge poles occur 
in the direct perturbative expansion of the amplitude. 
However, his arguments can be taken over with minor 
modifications to establish Eq. (4.3). 

Another important consequence of the results of this 
section concerns the validity of the perturbation 
expansion of N. We have shown that A^(4) has higher 
order poles than iV(2), and it seems very likely that the 
order of the poles at negative integer points keep on 
increasing with the order of the perturbation expansion. 
This, of course, means that the perturbation expansion 
must fail near these points. The failure of perturbation 
theory at negative integer values of / supports the 
conjecture that the partial-wave amplitude must have 
essential singularities at these points.8 

I t is of some interest to see what happens if one 
considers a Bethe-Salpeter-type amplitude which does 
not have crossing symmetry. The perturbation expan­
sion of such an amplitude does not have terms of the 
form ac

(4) and av
{A\ and to the fourth order, only #d(4) 

contributes. In this case, we have iVr(4> = ad
(4)+iV(2)J9(2), 

and it is shown in Appendix B that the second-order 
poles of #d(4) are not, in general, canceled by the 
corresponding poles of #{2)J9(2), except at 1= — 1. There-

6 P. Federbush and M. Grisaru (to be published). 
6 This follows from the fact that #d(4) satisfies the condition 

ad^is, n—%) =adf®(s> —»—4). For details, see Appendix A. 
7 S. Mandelstam, Ann. Phys. (N. Y.) 19, 1254 (1962). 
8 V. N. Gribov and I. Ya. Pomeranchuk, Zh. Eksperim. i 

Teor. Fiz. 43, 308 (1962) [translation: Soviet Phys.—JETP 16, 
220 (1963)]. 



1366 K . B A ' R D A K C I A N D D . A . G E F F E N 

fore, it seems very likely that the perturbation expan­
sion of N fails even for the Bethe-Salpeter amplitude 
if R e / ^ — 2. We shall see in the next section that 
similar conclusions apply also to D. The latter result 
has special significance to the discussion of the g2 — 0 
limit of Regge trajectories. 

V. FOURTH-ORDER CONTRIBUTIONS 
TO THE DENOMINATOR 

The starting point is Eq. (2.14). We separate Z)(4) 

into an elastic part Z>e
(4) and an inelastic part A ( 4 ) , 

DW = Dew+DiW, 

i r N^(S',I) 
Z V 4 > = - - ds'p(s')— , / N 

TJA s'—s (5.1) 

1 r AaM(s',l) 
D^=- - / ds' . 

wjg (s'-s)N<*Ks',l) 

Let us first examine the convergence properties of 
the integral for A>(4). Since N(4:)(s,l) goes to zero as 
s—>oo? this integral converges at the upper limit. 
Near s = 4 , however, A^(4) behaves like (s—4)z, and, 
therefore, the integral in question diverges for Re(Z) 
^ — 1 . (The properties of A^(4) required in the above 
discussion are derived in Appendix A.) An analytic 
continuation for De

iA) is provided by the following 
formula: 

ip(s) 
£>e(4) W ) = eTi,W(4) (sfi 

cos (irl) 

1 r° ds' 
_| / --p(sf+ie)\jriirlN^(sf+ie}l) 

2ir cos(x/) J_oo s'—s 

+e™lN^(s'-ie,l)2, (5.2) 

where the sign of the term (ml) in the exponential is 
opposite to the sign of Im(s), and the kinematical 
factor p{s) = \i(s—4)/s]1/2 is taken to have cuts running 
from 0 to — oo and from 4 to oo. To prove Eq. (5.2), 
we note that its right-hand side defines an analytic 
function with a cut on the real axis. I t is easily seen 
that the jump across this cut for s<0 vanishes identi­
cally. One can also verify from Eqs. (2.3) and (4.1) that, 

er^NQi+ie, l)-e™lN(s-ie, Z) = 0 , (5.3) 

for 0<.?<4. I t follows from this equation that the 
jump of De

(4) is defined by Eq. (5.2) between s=0, 
and s = 4: vanishes. Finally, the jump of Z)e

(4) is equal 
to —2ipN(A)(s,l) when ^ > 4 . Equation (5.2) is thus 
seen to be completely equivalent to Eq. (5.1). 

The integral in Eq. (5.2) converges for all values of I 
since the threshold point s=4 is not included in the 
range of integration. I t then follows that Z>/4) (s,Z) is 
analytic in the entire complex / plane except at negative 
integer points, where it has in general the same order 

poles as N(A)(s,l). These poles, with the exception of 
the pole at 1= — 1, are, in general, of higher order, as 
was shown in the previous section, and they make a 
simple perturbative expansion for the Regge trajectories 
except for the leading one impossible. To see this, 
consider the limit g2 —» 0 of the equation 

i+g2£(2)+^e
(4)==o. (5<4) 

Clearly, in this limit, Eq. (5.4) can only be satisfied if 
/ approaches the singularities of D as g 2 - ^ 0 . This 
result was obtained to second order in Sec. I l l and 
led us to define the trajectories as l=an(s), n=l, 2, 
• • • ? / —> — n as g2 —» 0. But Z>e

(4) has third-order poles 
at all negative integer values of I except 1= — 1, where 
the pole is first order. Consequently, in the neighbor­
hood of / = —n, 117*1, Eq. (5.4) takes the form 

l+g2R™ (s)/ (l+n)+g4Re^ (s)/ (l+ny=0. (5.5) 

A solution to (5.5) as g2—>0 requires that an—*—n 
-|-0(g4/3). This result is completely inconsistent with a 
perturbative expansion of an in powers of g2. On the 
other hand, the leading trajectory, l=ai(s) has no such 
difficulties (to fourth order at least). 

Of course, it is possible that the third (and second!) 
order poles in Z)e

(4) are canceled out by contributions 
from Z>(4) and higher order terms in the expansion for 
D. Quite the contrary is expected, namely, the order 
of the poles of D{2n) and N{2n) at negative integral values 
of / should increase rapidly with n. Of course, this 
result is closely connected with the fact that pertur­
bation theory for D itself is not valid. 

Let us consider, now, the inelastic part of Z?(4), A-(4), 
denned in Eq. (5.1). The integral as it stands is defined 
for real values of l> — 1. I t is shown, however, in 
Appendix D, that Aa/6)(.?,/) is an analytic function of 
/ in the entire complex plane except for poles at negative 
integer points. Since N{2)(s,l) has similar properties in 
the complex variable /, ADi(A)(s,l) is analytic in the 
entire I plane with the exception of negative integer 
points and at values of I (for fixed s) where N(2)(s,l) 
vanishes. The analytic continuation for A ( 4 ) itself can 
then be obtained directly from the analytic continuation 
of Aa.;(6)/Af(2).9 A ( 4 ) is not defined for a given value of 
/ if, in the range of integration of s\ Ar(2) (s',l) has a zero. 

From Eq. (3.1), we see that iV(2)(^/,/) vanishes at the 
zeros of Qi(l-\-2/(s'—4)). Since s' varies from 9 to oo, 
the argument of Qi varies from 7/5 to 1. We show in 
Appendix C that, as z varies from 1 to oo y the values 
of / for which Qi(z) vanish vary continuously from —n 
to — n—| along the real / axis. Therefore, the function 
Di^(s,l)f and, hence, D(s,l) has branch cuts which 
extend to the left along the real / axis, beginning at 

9 Aai(6)(s}l) may be singular at the point s = 9 for Re(7)<0. 
This difficulty can be circumvented by writing the integral for 
2V4) as a contour integral around the right-hand cut of ai{6)(s',l)/ 
(ks

f—$)N(^(sffi. Since the integrand is analytic in s', we can 
deform the contour slightly in the $f plane to avoid the point 
$' = 9. This does not change any of our conclusions. 
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negative integers and ending before reaching the 
neighboring negative half-integer. [We ignore here 
the possibility that Aa/6) (sf,l) vanishes when A^2) (s',l) 
does, since this seems highly unlikely.] I t must not be 
concluded, from the existence of branch cuts in the 
denominator function to fourth order, that the scat­
tering amplitude itself, given by N/(l-\-D), has these 
cuts as well. We reserve the discussion of this point to 
the conclusions that follow. 

VI. CONCLUSIONS 

We have investigated the complex angular momen­
tum properties of the scattering amplitude using a N/D 
factorization to obtain perturbation expansions for both 
N and D for the case of scalar mesons with a #3 inter­
action. Since our calculations are only up to fourth 
order in the coupling constant, the validity of our 
conclusions depend upon the unknown convergence 
properties of the series expansions for both the numer­
ator and denominator functions. Consequently, our 
results are of only suggestive value. While we expect 
that these expansions remain valid in a larger region 
of the / plane than does the usual series for a(s,l) 
given by Eq. (2.4), we can only hope that this region 
is large enough to include at least the leading Regge 
trajectory. I t is further assumed that the analytic 
continuation of N and D to the left of Re (I) = — 1 is 
given by the sums of the analytic continuations of each 
term in their perturbative expansions. From our results 
to fourth order that higher order terms in the series 
contribute poles of increasing order at / = — 2, —3, • • •, 
it is very likely that the expansions actually diverge in 
the neighborhood of these points. This has the im­
mediate consequence that the Regge trajectories, 
l==^an(s,g2), with the possible exception of the leading 
one, are not expandible in powers of g2. Hence, one 
must solve the equation lJrD(s,l) = 0 without resort 
to a perturbative expansion in order to determine these 
trajectories. 

The factorization of the a(s,l) made in this paper 
requires that N carry the whole left-hand cut in s and 
D carry the entire right-hand cut. Several other 
plausible methods of factorization exist; for example, 
N may be required to have part of the inelastic right-
hand cut. However, if analogy with the Fredholm 
solution to the potential scattering problem is main­
tained, no ambiguity arises in the treatment of elastic 
graphs (i.e., graphs with only two-particle intermediate 
lines in the s channel). When one takes into account 
inelastic processes, the situation changes, and different 
methods of factorization yield different numerator and 
denominator functions. 

With our choice of factorization, we have found that 
D, to fourth order, contains cuts in the complex I plane 
near negative integer points. We cannot conclude 

from this, however, that these cuts are also present in 
the scattering amplitude obtained after summing the 
series for N and D. Indeed, it is easy to find other 
factorizations which do not lead to cuts in the / plane 
for individual terms in the perturbative expansions. 
This does not preclude the possibility that the sum has 
branch cuts nor does it necessarily follow that an 
arbitrary choice of factorizations will yield convergent 
series for N and D. In our case, it is easily seen that 
the numerator function also has similar cuts starting 
with the sixth-order term in the expansion. Hence, if 
the power series in g2 for the numerator and denomi­
nator functions converge absolutely in a region of the 
plane including the cut, it can be shown that their ratio 
is free of any cuts. In the absence of any definite 
knowledge of the validity of the particular factorization 
we have used, as well as of the convergence properties 
of the resulting power series, our results only suggest 
that inelastic processes can give rise to branch cuts in 
the complex / plane near negative integer points. Note 
that the cuts in the / plane we have found arise in 
quite a different manner from cuts obtained previously 
by Sawyer10 and Swift and Lee.11 

The nature of the higher order poles at negative 
integer values of I supports the conjecture of Gribov 
and Pomeranchuk8 about the existence of essential 
singularities at these points. The above-mentioned 
authors reached this conclusion using crossing sym­
metry; however, from our analysis in Sec. IV, it seems 
likely the situation is the same for the Bethe-Salpeter 
amplitude. I t is also remarkable that, at least to the 
order g4, there is no trouble at / = — 1 . This leaves 
some hopes for the expandability of the leading Regge 
trajectory in powers of g2, 

The methods employed so far for the scalar theory 
can also be applied to more realistic theories such as 
pseudoscalar mesons interacting through a </>4 term. 
Because of the more singular high-energy behavior of 
the interaction compared to the <j>3 interaction, diffi­
culties arise to the left of Re (0 = 0 instead of Re(Z) 
= — 1. Again, there is indication of breakdown of 
perturbation theory at negative integer points, and 
branch cuts arise due to inelastic processes. The location 
of these branch cuts, however, seems to be a difficult 
task, and a result considerably different from the <j>z 

case is possible. 
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APPENDIX A: ANALYTIC CONTINUATION OF FOURTH-ORDER GRAPHS 

We present here explicit formulas for the analytic continuations of a<iiA) and ac
(4), 

od™(s,l)=-
1 

2ir(s—4) sin(7r/) [JA sf—s\ 

1 
ds'-

•*COS(TT/) r4 G O + 2 / / ( ^ - 4 ) ] 
dt-

dt~ 
Pi(2t-1) 

w Jo { ^ [ ( ^ , - 4 ) ( / - 4 ) - 4 ] } 1 / 2 

1 /•! 

rt(rt-<£+<)+£) 
PK2^-l)[(4-^) / -4] 1 / 2 

^ 

(v -4) 1 ' 

2v 

(S-4:)2 S-Aj 

L (^+45-16)1/2(^(^-4))1 

2 Jo C(4-<y)/-V(^-4)-4]1/2{(4-^)C(4-^)/+^-16]} 1/2 

1 /•* ( / - 4 ) ^ ( l + 2 ^ ~ 4 ) ) 

Wo C ( / - 4 ) ( ^ - 4 ) - Z ; ] [ / ( 4 ^ + ^ - 1 6 ) ] 1 

« c ( 4 ) M = -
l 

4?r(>—4) sin(7r/) 

*(>-4) ^ 

*—4+-J sin(7r/)-i cos(7r/)6'f 4 / 

( s - 4 ) P , ( 2 * - l ) ,) 1 /.00 - 1 

- / <fo'/ (ft 
2 J4 A [ ( 4 - ^ ) ( / - l ) + ^ ] { ^ ( 4 - 5 ) [ ( 4 ~ ^ ) ^ - 4 ( ^ + ( 4 - 5 ) 0 + 1 2 ] } 1 / 2 

/-1 r 2 [ 2 ( 2 - l ) ( ( . - 4 ) ( 2 - Z ) + Z / c ( , ) ) P 2 [ ( . - 4 ) ( l - . ) + ( . + l)«(,)] 
dtPi(2t-l) / & 

sin(7r/)70 Jo L 2 ( 4 - ^ - Z ( 4 - J + K ( J ) ) 

2 [ 2 ( 0 - l ) ( ( ^ - 4 ) ( 2 - 2 ) - ^ ( ^ ) ) ] 1 / 2 [ ( ^ - 4 ) ( 0 ~ l ) - ( s + l ) ^ W ] 1 / 2 " 

2(4 -5 ) ( * - 1 ) - Z ( J - 4 - K ( $ ) ) 

1/2 

2* 
dZ 

& 2 - 1 

sin(x/) ;o L C 0 ( Z - l ) ( ( ^ - 4 ) ( 2 - 2 ) + 2 i i : ( 5 ) ) ] 1 / 2 C ( ^ - 4 ) ( l - 2 ) + ( 2 + l ) K ( ^ ) ] i « 

[ 0 ( 0 - 1 ) ( ( ^ 4 ) ( 2 - 2 ) - ^ ( J ) ) ] ^ [ ( 5 - 4 ) ( Z - 1 ) - ( Z + 1 ) K ( 5 ) ] ^ J 

2<r' 

$ cos(7r/) r00 ds' 
C«i+ 

j - 4 . 
+ / ds' . 

Jo [> ' (> '+.?-4)0 '2+s'(s-4)+4(l-s))]1 / 2 r 

X / « -+ / 
Jo (t+s+s'-4:)[s't((s'-4:)(t-4)-4:)J<* Jo (»-4) 1 / 2 

i S —S 

X 
T(S,V) COS(TTO 

Ms,v)\ 

[4+5+T(5,Z))] 1 / 2 

/ r ( v ) \ 

[[4:-S-T(S,V)J/2 1%+2S+2T(S,V)-VJ 

'4:+S—T(S,V)' 

A—S-\-T(S,V)J 

1/2 

X-
[_S+2s+2r(syv)-vJ/2j 

iw(s-4) r1 

vn i0 
<#-

[ ( 4 - ^ ) / - 4 ] 1 / 2 P z ( 2 / - l ) 

2 COS(TTO JO [ ( 4 ~ . y ) 2 ( ^ - l ) + ^ - 4 5 ] [ ( 4 - 5 ) / ( ( 4 - 5 ) ^ + ^ - 1 6 ) ] 1 / 2 
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-v/A 

dt~ 
( * - 4 ) i * Q , ( l + 2 i / f r - 4 ) ) 

-i t a n (71-/) dt-
( / - 4 ) ^ ( l + 2 * / ( 5 - 4 ) ) 

'4r-v/i [ / 2 +(5-4)^+z ; -45] [ / (4 /+^-16) ] 1 / 2 JJ 

We shall now sketch the derivations of Eqs. (4.2), (Al), and (A2). Consider the function 

2x 

. (A2) 

Iv(x,s,t) = l n ( s - 3 ) + 
sin (wl). 

[_x(x~4)J/2Qi - 1 -
5 -4 , 

which has a cut from x=4—5 to 5= <x> for real 5. The discontinuities of this function across various parts of its 
branch cut can be calculated through the use of the following identities: 

Qii-xl^ie)^ -e±i7rlQi(x±ie), sm(irl)Qi(x±ie) = iirle^irlPi(x)-Pi(-x)29 

with x real. I t can then be verified that a dispersion relation for Iv(x,s,l) yields Eq. (4.2). 
To derive Eqs. (Al) and (A2), we convert Eqs. (4.1) in the following form: 

(A3) 

ad^(s,D=-
ds' fl r° Pi-1-2^/(5-4)] 

dt-
27r(5-4)sin(7r/)74 5 ' - 5 l 2 . / 4 _ s [>'*((*'--4) ( * - 4 ) - 4 ) ] "11/2 

ac<
4>(5,0=~ 

1 
ds' 

icos(7r/) r(4.'-i2)/(«'-4) O i [ l + 2 * / ( s - 4 ) ] 1 
+ / dt 

IT Jo [_s%{s'-m-±)-±)ji2\ 
e o + 2 5 y ( 5 - 4 ) ] 

(A4) 

2 T T ( 5 - 4 ) Sin(7r/) J, l[5 /(5 , + 5 - 4 ) ( 5 , 2 + 5 , ( 5 ~ 4 ) + 4 ( l - 5 ) ) > 

+ dt-
P , [ - l - 2 * / ( * - 4 ) ] 

+ 

The above equations can easily be proved by con­
sidering the dispersion relation the function 

( 2 z [ - l - 2 x / ( ^ - 4 ) ] / [ ^ 2 ( ( 5 , - 4 ) ( x - 4 ) - 4 ) ] 1 / 2 

satisfies. 
In the expression for a«/4), only the last integral needs 

a further analytic continuation. To this end, we first 
simplify the integral by the substitution (sf—4)(/—4) 
= v, and then transform it into an expression that does 
not involve infinite limits of integration through the 
use of the dispersion relation the function [(#—4)/ 
x(v+4x-16)Ji2Qit-l-2x/(s-4:)~] satisfies. As for 
the expression for ac

iA) in Eq. (A4), the first integral 
that occurs in it can be transformed into a suitable 
form by the standard trick of considering a dispersion 
relation for the integrand. The same can be done for 
the last integral after a change of variable (sf—4)(/—4) 
= v, which completes the derivation. 

I t is clear from Eq. (A4) that, in general, a/® has 
second order and ac

(4) has third-order poles at negative 

4-. ( ^ + 5 + 5 , - 4 ) [ 5 7 ( ( 5 ' - 4 ) ( ^ - 4 ) - 4 ) ] 1 / 2 

i C0s(7r/) r(4*'~12)/(S'-4) G f 1 + 2^ / (5 -4) ] 
dt-

( ^ + 5 + 5 , - ~ 4 ) [ 5 X ( ^ - 4 ) ( / - 4 ) - 4 ) ] : 1/2 

integer points due to the factors of sin(7rZ) in the 
denominator and Qi in the numerator. The pole at 
/ = —1 in ac

(4) and #v
(4) is, however, simple, since the 

original expressions for them given in Eq. (4.1) converge 
at that point. 

There are some points of interest in connection with 
the expressions given in Eqs. (Al) and (A2). I t is clear 
from these expressions that both aa^isj) and ac

(4)(5,/), 
as well as av

iA)(s,l), go to zero as 5 —»00 even when 
Re( / )<0 . For Re(Z)<0, ac

(4) and av^ both behave as 
(s—4)z near 5=4 , whereas a<*(4) behaves as (5—4)2*. 
We shall see in the next Appendix that this spurious 
threshold contribution gets cancelled by the term 
a(2)Z)(2). Another important point to note is the fact 
that the factor [cos(x/)]_ 1 that occurs in the expression 
for ac

(4) does not give rise to poles at half-integer 
points, since the expression that multiplies this term 
vanishes at the same points. Finally, #d<4) satisfies the 
relation adi4d(s, n~~£) = #d(4) fo — n—J) when n is an 
integer, since all the terms in the expression for a^(4) 
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satisfy it individually. The same conclusion does not 
hold for #c

(4), however, since there is a cos(7r/) in the 
denominator that vanishes at l=n—|, and the indefinite 
expression when evaluated properly can be shown to 
violate this reflection principle. Hence, we see that in 
contradistinction to potential scattering, the relativistic 
amplitude in general cannot satisfy the equation 
a(s, n—%) = a{s, —n—\). 

APPENDIX B: THE DIRECT TERMS 
IN THE NUMERATOR 

Here we investigate the possible cancellations be­
tween the terms a^(4) and a{2)Dm that contribute to 
N&. Denoting iVrB.s.(4)(j,0 = fld(4)W) + »(2)^(2), where 
NB.SS® is the Bethe-Salpeter numerator to the fourth 
order, it is easy to see that NB.SS® has no right-hand 
cut in the s plane because of the unitarity relation 
Aad<

4) = p[>(2>]2. Therefore, (5-4)~ z A"B.s.(4) has no 
singularities to the right of 5 = 4, and A"(4) must behave 
like (s—4)z near s = 4, although the terms a^(4) and 
a(2)/)(2) individually have the spurious threshold be­
havior mentioned in Appendix A. 

We now show that the second-order pole of A^(4) at 
l——n has a residue <rn(s) given by 

<rn(s) = Tntl/(s-4:)l, (Bl) 

where Tn is an ^th order polynomial. The following 
formula can easily be derived from Eqs. (2.3) and (4.1): 

e-ivlNB.8S*>(s+ie, 0 - « B . S , ( 4 ) ( J - « , /) 

= / dtPil-i W4)M 
5-4 J, \ s-4/ 

U 
+ d(3~s)Pi 

5-4 (-~J D<®(s,l). (B2) 

In deriving Eq. (B2), use is made of the fact that 
A/4)(s,t) has no left-hand cut in the s plane. The 
integral that appears in this equation is an entire 
function of I because of the finite range of integration, 
and the last term has only first-order poles due to the 
term Dm. Taking / to be a negative integer, it follows 
that the residue of a second-order pole <rn(s) cannot 
have a left-hand cut. Further, it can have no right-hand 
cut since A^B.S.(4) has none. Using the threshold behavior 
of iVB.s.(4), we conclude that <rn(s) must be an nth order 
polynomial in 1/(5—4). An explicit calculation using 
Eqs. (3.7) and (Al) shows that this polynomial vanishes 
for n=l, but does not in general vanish for other values 
of n. We therefore conclude that A^B.S,(4) has, in general, 
second-order poles at negative integers with the 
exception of I— — 1. Here it is of some interest to 
remark that the kinematical factor p(s) is entirely 
responsible for the second-order poles in the relativistic 
case; in the corresponding situation in potential 
scattering the second-order poles of a^(4) and amD(2) 

cancel at every negative integer point. 

APPENDIX C: THE ZEROS OF Qi(z) 

Since the vanishing of Qi(z) for real values of z 
greater than 1 lead, in our model, to branch cuts in 
the complex I plane, we present here some properties 
of the zeros of Qi(z) that are not readily available in 
the literature. 

We observe, first, that the function £mQi(z), where 
f= z-\-(z2—1)1/2, is bounded in the complex I plane for 
| z | > 1 except for the presence of simple poles at 
l=— n— 1, n = 0, 1, •••. Consequently, we can write 

rwe*(*)= E 
Pn{z) 

n-0fn ( / + » + ! ) 
(CI) 

If we take the imaginary part of Eq. (CI) we obtain, 
immediately, the result 

Qi(z)^Q for I m / ^ 0 
z> 1 and real. (C2) 

For I real, Qi(z)>0 for real z>\ and / > — 1 . This can 
be deduced from Eq. (CI), since every term in the 
sum is positive. Finally we note that, for fixed s > l , 
Qi(z) changes sign as / varies continuously from —n—e 
to — n— 1+e, n=l, 2, • • •. Since Qi(z) is a continuous 
function of / in these intervals, it follows that Qi(z) = 0 
for some value of / in the region — n— \<l<— n, 
» = 1 , 2 , - - . . 

The positions of the roots of Qi(z) as z varies from 1 
to oo can be given more specifically. To do so we make 
use of the known behavior of Qi(z) for Z near 1 and 
for z5>\. I t is then easy to prove that the roots of 
Qi(z) = 0 satisfy the following properties: 

for 

As z-+l+, l+n-+0-, 
(C3) 

Since Qi(z) cannot vanish at the points l=—n, —n—\, 
n=l, 2, • • •, it follows that the roots of Qi(z) = 0 are 
confined to the intervals —n—\<l<—n, n=l> 2, • • •, 
as z varies from 1 to GO . 

We summarize the results of Appendix C in the 
following theorem: 

The equation Qi(z) = 0} with lmz = 0 and l < 2 < o o 
can only be satisfied for real values of / which are 
restricted to lie in the intervals 

— n—%<l<— n, n=l, 2, • • • . 

As z approaches 1 in the interval, I approaches — n, 
while it reaches the value -~n—\ only when % becomes 
infinite. 

APPENDIX D: ANALYTICITY PROPERTIES OF 
SIXTH-ORDER GRAPHS 

Here we want to examine the analyticity region of 
the inelastic part of #(6). Since we want a nonvanishing 
Aa(6) for 5>9, we have to consider graphs with three-
particle cuts in the s channel. We shall restrict ourselves 
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FIG. 2. A typical sixth-
order diagram. 

to the graph given in Fig. 2, the treatment of other 
graphs being similar. If the contribution of this graph 
to the scattering amplitude is denoted by /i(6)fa>0> by 
standard Feynman parametrization, we have 

(2x)87o 

XtA(a)s+B(a)t+C(a)+ie]~\ (Dl) 

where the integration runs over seven Feynman 
parameters ah • • •, «7 symbolically denoted by a single 
letter a, and, 

A{a)^aia2az, 

+OJ2(«7a4+a6Qt5) , 

C (a) = «22 (oci+a2-{-cxz) — ( a i + a ^ + a u + a s ) 

X [ ( a i + a 2 + a : 3 ) ( « 2 + a 3 + c e 6 + a 7 ) + ( a 6 + a 7 ) 2 ] 

— (0:4+0:5) [ 2 a 2 (0:6+0:7) 

+ (0:4+0:5) (a 2 +o:3+«6+Q:7)] , 

A(a) = (1—0:2) (0:2+^3+0:6+0:7)— (a3+o:6+o:7)2 . 

We choose the physical t channel so that £>4 and 
s<0 and sufficiently small in magnitude. The absortive 
function in this channel, given by Ai(6)(s,t) = [_f(s,t) 
— fx(s,t)~]/2i, is equal to 

A^(s9t) = 
4(2TT)7 

<faS[l -£a»]A(a) 

Xb"[A{a)s+B(a)t+C(ay\. (D2) 

With the help of Eq. (2.3), the corresponding partial 
amplitude #i(6) (s,t) is given by 

( . -4)H27r) 8 io [ 5 ( a ) ] 3 

xe * -

2.4(a) 2 4 4 ( a ) + C ( a ) 

5 (a ) 5 - 4 5 (a ) 
• ) • 

(D3) 

Although Eq. (D3) has so far been established only 
for restricted values of s, it can easily be continued to 
the entire complex $ plane except for the usual cuts on 
the real axis. This follows by observing that the function 
Qi" has a cut only on the real axis, and that the imagi­
nary part of the expression Z = l — 2^4(a)/5(o:) — [ 2 / 
(s—4:)']4tA(a)+C(a)/B(a) has the opposite sign com­
pared to Im(s), since the function (4:A+C)/B is 
negative semidefinite. 

We want to extend Eq. (D3) to values of I in the 
left-half complex I plane. As it stands, this expression 

blows up for Re( / )< — 1 , whenever 5 (a ) vanishes. To 
get around this difficulty, we use the following series 
expansion for the function Qi'(Z) in inverse powers of 
Z: 

r(H-i) 
Qi,f (z) = TTm2-l+l z~1-* 

r(4*+4)r(j/+i) 

N-I r(i/+2+»)r(i/+§+») 
X E ar*» — +KN(z,l), (D4) 

n=0 w i r (/+§ + ») 
where N is an arbitrary positive integer and the re­
mainder term KN(Z,1) goes at least as fast as \z\~

2N~l~s 

as 2—>QO. Substituting Eq. (D4) into Eq. (D3), we get 

ai<8> (*,/) = 
f r(/+i) 

( S - 4 ) 3 ( 2 T T ) 8 r(i/+i)r(i/+i) 

N r$l+2+n)T&+§+n) 
x £ — — wn(s,i) 

n=0 w | r ( / + f + W) 

where 
+KN(s,l), (D5) 

KN(s,l)= / &*S( l -E*<)[£(a)}- 8 A(a) 

/ 2 A ( a M - C ( a ) \ 

\ 5 - 4 5 (a ) / 5 - 4 5 (a ) 

^ n W ) = /" & « [ 1 ~ E aJ [5 (a ) ] i + 2 -A(a ) 
. / 0 

5(a ) [_4(a)5+C(a)] 

The integral for KN(s,l) is well defined except when 
5 (a) becomes zero, at which point the argument of KN 
becomes infinite. Since KN(ZJ) goes as \z\~2N~l~~z as 
|z|—>QO, it is easily seen that the integral for KN 
converges for Re(/)>— 2N~ 1 and defines an analytic 
function in this region. Let us now examine the term 
Wn(s,l). I t can be easily shown that in the range of 
integration of a's, the expression Z{a) = B(a)-~2[_A{a)s 
+C(a)] / ( s—4) can never vanish if l m ( s ) ^ 0 . Then 
taking Ims^O, the integral for Wn(s,l) is well defined 
except when 5 (a) = 0 . 5 (a) can vanish only if some of 
the a's vanish, and for the sake of definiteness we take 
a 4 =a7 = 0, the argument being similar for other pairs 
of a's. Defining 

C (ai,a2,o:3,o:5,a6) = C (ai,a2,Q;3,0,a5,«6,0) , 

Z' (ai,a2,a3,o:5,a6,5) ^ Z (ai,a2,a3j0,o:5,a6,0) 

= a2a6o:5 — [ 2 / (s — 4) ~] 

X [ a i a ^ s + C ( a ) ] , 

A' (a) = (1 —a2) (o:2+a3+ae) — (az+a&)2, 

we can write12 

12 To be more rigorous we should have defined Wn11 with 0:4 
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where 

Jo 

XA'(a) (a2a5aQy+2ntZ'(ays)'yi-z~2«, (D6) 

In the above expression, the arbitrary constants ei 
and e2 satisfy the relations €i>0, e2> ei, and ei+2e2< 1, 
so that the expressions (1—0:5—2ae)~1 and (1— a2—2a6)~

1 

that occur in some of the terms never blow up. Indeed 
this is the reason for splitting up the range of integration 
with respect to a2 and a$ into intervals (0,ei), (ei,l), 
and (0,€2), (e2,l) in the double-surface term one gets 
after two partial integrations; the last partial integra­
tion is carried out with respect to a5 or <x2, depending 
on the interval. 

Inspecting the exponent of the expression faaaae) 
and the corresponding intervals of integration in various 
terms in Eq. (D7), we see that domain convergence 

and CK7 restricted to a small region near zero, rather than actually 
setting 0:4=0:7=0. The argument that follows is not, however, 
substantially effected by this simplification. We thank Dr. 
Schnitzer and Dr. Federbush for bringing this point to our 
attention. 

and Wn
11 is regular at 0:4=0:7=0. The integral for Wn

l 

diverges when a2, «5, or a& is near zero unless Re(/) 
>—2n— 1. To increase the domain of convergence in 
the I plane, we integrate by parts with respect to a2, 
as, and «6, successively, and obtain the following 
result: 

has been increased from the region Re(f)> — 2n— 2 to 
Re(/)> — 2n~3. This process of partial integration can 
be repeated indefinitely, and it follows that Wn1, and, 
therefore, Wn is analytic in the complex / plane exclud­
ing negative integer points. Using Eq. (D5), it is clear 
that ai(6)(s,l) is analytic for Re(/)> — 2N— 1, except 
for the usual poles. Since N can be taken arbitrarily 
large, #i(6)(s,/) must be meromorphic in the entire 
plane, concluding the argument. 

The preceding discussion has many points of simi­
larity to the treatment of the asymptotic properties of 
perturbation terms given in Ref. 5. Indeed, the discus­
sion in Sec. IV shows that the analyticity properties 
proved above imply the asymptotic expansion given bv 
Eq. (4.3)forai<6>(*,0. 

We finally remark that, although we have here chosen 
a specific graph for illustration, the ideas of the proof 
apply to any arbitrary diagram. 

f1 (a2a,aQ)Wn+1 

Wn
I(s.I) = / daida2da%da*>da?)b[\--^a%

r\ 
Jo (l+2n+iy A da* da,/ \c 

d d \ / d d \ / d d 
8 M + ) ( « ( a i ) + 

da.3 da§/ \dcx3 day \ dai da% 

< d d \ (d d Y 
+ («(«i)+ Was) 

\ dai da,/ \do:i d a 2 / . 

[ A , ( a ) Z , ( a , j ) - M » - » ] + / dan daJ ^ 2 5 ( l - a 2 - a 5 ~ a 6 ) 

(0:20:5)z+2n+1 rei f€2 [ar>a6(l-as>-aQ)ll+2n+1 

X (a,y+2nA'(a)Z'(a,s)~l~2n-s+ / da, \ da, 
(/+2n+l)2 Jo Jo (l+2n+iy 

X 5(o:6~ei)-
d "ir(l—«5~ae)[(l—Ci2)(oi2+aG)-~a<?~] 

da,. - Q 5 5 - -2o:6 

— / da2 
Jo Jo 

*-"* [a2a,(l-a2-a,)J+2n+1 d 
das 

•Z'(0, 1— 0:5 — «6, 0, O5, «6, S) l 2n 

1—a2—a, 
9(1 —a2—a,— e2)0(ei+o:2—1)~ 

( /+2^+l) 3 da,[ l-a2-2a, 

X[(l-a2)(a-2+a6)-«6
2]^(0 )a2 ,05 l - a 2 - « 6 , a6, j)-«»-» [ . (D7) 

file:///dcx3

